数据分析应该以业务场景为起始思考点,以业务决策作为终点。
随着人口和流量红利的下降,互联网行业必然会朝着精益化运营的方向发展。数据分析在很多互联网人的工作中越发显得重要,而对于产品经理来说,更是如此。
本文将为产品经理介绍数据分析的基本思路,并基于此,衍生出 2 个常见方法和 7 个应用手段,希望在数据分析的实际应用中能给大家带来帮助。
一、数据分析的基本思路
数据分析应该以业务场景为起始思考点,以业务决策作为终点。
基本思路为 5 步,首先要挖掘业务含义、制定分析计划、从分析计划中拆分出需要的数据、再根据数据分析的手段提炼业务洞察,最终产出商业决策。

接下来我们用一个案例来具体说明这 5 步思路:
1. 挖掘业务含义
首先要了解市场部想优化什么,并以此为核心的 KPI 去衡量。渠道效果的评估,最重要的是业务转化:对 P2P 类网站来说,是否『发起借贷』远远比『用户数量』重要。
所以无论是 Google 还是金山渠道,都要根据用户群体的不同,优化相应用户的落地页,提升转化。
2. 制定分析计划
以『发起借贷』为核心转化点,分配一定的预算进行流量测试,观察对比注册数量及 ROI 效果,可以持续观察这部分用户的后续价值。
3. 拆分查询数据
根据各个渠道追踪流量、落地页停留时间、落地页跳出率、网站访问深度以及订单类型数据,进行用户分群。
4. 提炼业务洞察
在不同渠道进行投放时,要根据 KPI 的变化,推测业务含义。比如谷歌渠道的效果不好,可能因为谷歌大部分的流量在海外,可能会造成转化率低。而金山网络联盟有很多展示位置,要持续监测不同位置的效果,做出最后判断。
5. 产出商业决策
最后根据数据洞察,指导渠道的投放决策制。比如停止谷歌渠道的投放,继续跟进金山网络联盟进行评估,而落地页要根据数据指标持续地进行优化。
二、常见的数据分析方法
(一)内外因素分解法
内外因素分解法是把问题拆成四部分,包括内部因素、外部因素、可控和不可控,然后再一步步解决每一个问题。

对于这类某一数据下降的问题,从产品经理的角度来说,可以如何拆解?
根据内外因素分解法分析如下:
1. 内部可控因素
产品近期上线更新、市场投放渠道变化、产品粘性、新老用户留存问题、核心目标的转化;
2. 外部可控因素
市场竞争对手近期行为、用户使用习惯的变化、招聘需求随时间的变化;
3. 内部不可控因素
产品策略(移动端/PC端)、公司整体战略、公司客户群定位(比如只做医疗行业招聘);
4. 外部不可控因素
互联网招聘行业趋势、整体经济形势、季节性变化;
(二)DOSS
DOSS 是从一个具体问题拆分到整体影响,从单一的解决方案找到一个规模化解决方案的方式。

按 DOSS 的思路分解如下:
1. 具体问题
预测是否有可能帮助某一群组客户购买课程。
2. 整体
首先根据这类人群的免费课程的使用情况进行数据分析,之后进行延伸,比如对整体的影响,除了计算机类,对其他类型的课程都进行关注。
3. 单一回答
针对该群用户进行建模,监控该模型对于最终转化的影响。
4. 规模化
之后推出规模化的解决方案,对符合某种行为轨迹和特征的行为进行建模,将课程推荐模型加入到产品设计中。
三、数据分析的应用手段
根据基本分析思路,常见的有 7 种数据分析的手段。
(一)画像分群
画像分群是聚合符合某中特定行为的用户,进行特定的优化和分析。
比如在考虑注册转化率的时候,需要区分移动端和 Web 端,以及美国用户和中国用户等不同场景。这样可以在渠道策略和运营策略上,有针对性地进行优化。
(二)趋势维度

建立趋势图表可以迅速了解市场, 用户或产品特征的基本表现,便于进行迅速迭代;还可以把指标根据不同维度进行切分,定位优化点,有助于决策的实时性;
(三)漏斗洞察
通过漏斗分析可以从先到后的顺序还原某一用户的路径,分析每一个转化节点的转化数据;

所有互联网产品、数据分析都离不开漏斗,无论是注册转化漏斗,还是电商下单的漏斗,需要关注的有两点。第一是关注哪一步流失最多,第二是关注流失的人都有哪些行为。
关注注册流程的每一个步骤,可以有效定位高损耗节点。
(四)行为轨迹

行为轨迹是进行全量用户行为的还原。只看 PV、UV 这类数据,无法全面理解用户如何使用你的产品。了解用户的行为轨迹,有助于运营团队关注具体的用户体验,发现具体问题,根据用户使用习惯设计产品,投放内容;
(五)留存分析
留存是了解行为或行为组与回访之间的关联,留存老用户的成本要远远低于获取新用户,所以分析中的留存是非常重要的指标之一;

除了需要关注整体用户的留存情况之外,市场团队可以关注各个渠道获取用户的留存度,或各类内容吸引来的注册用户回访率,产品团队关注每一个新功能对于用户的回访的影响等。
(六)A/B 测试
A/B 测试是对比不同产品设计/算法对结果的影响。

产品在上线过程中经常会使用 A/B 测试来测试产品效果,市场可以通过 A/B 测试来完成不同创意的测试。
要进行 A/B 测试有两个必备因素:
1.有足够的时间进行测试;
2.数据量和数据密度较高;
因为当产品流量不够大的时候,做 A/B 测试得到统计结果是很难的。而像 LinkedIn 这样体量的公司,每天可以同时进行上千个 A/B 测试。所以 A/B 测试往往公司数据规模较大时使用会更加精准,更快得到统计的结果。
(七)优化建模
当一个商业目标与多种行为、画像等信息有关联性时,我们通常会使用数据挖掘的手段进行建模,预测该商业结果的产生;

例如:作为一家 SaaS 企业,当我们需要预测判断客户的付费意愿时,可以通过用户的行为数据,公司信息,用户画像等数据建立付费温度模型。用更科学的方式进行一些组合和权重,得知用户满足哪些行为之后,付费的可能性会更高。
以上这几种数据分析的方法论,仅仅掌握单纯的理论是不行的。产品经理们需要将这些方法论应用到日常的数据分析工作中,融会贯通。同时学会使用优秀的数据分析工具,可以事半功倍,更好的利用数据,实现整体增长。
爱盈利(aiyingli.com)移动互联网最具影响力的盈利指导网站。定位于服务移动互联网创业者,移动盈利指导。我们的目标是让盈利目标清晰可见!降低门槛,让缺乏经验、资金有限的个人和团队获得经验和机会,提高热情,激发产品。
相关文章推荐
-
朋友圈广告升级,可以在朋友圈和广告主对话!
朋友圈广告已经上线有一段时间了,很多大品牌都已经投放朋友圈广告,逐渐很多小品牌也开始投放广告。昨天,出现了一条神奇的朋友圈广告,来自农夫山泉。与以往的朋友圈广告不太一样的是,这条广告的底部有一个提示,用户可以@广告主进行互动。据了解,这是朋友圈广告正....
-
看那么多产品文章,为何仍做不好产品?
尽信书,不如无书,若是全如书中所说,那是不是太简单了?知识是不完整的,尤其是文章里的知识,受限与篇幅,就更是残缺不堪的了。知识是不完整的有一种标题格式的文章,你一定见过,比如:如何打造千万用户的产品,或者:掌握x个技巧,让用户上瘾等等,这些文章都是....
-
APP是通过怎样的模式去盈利呢?
现在很多企业和商家都有推出自己产品的APP,想必大家也都好奇,APP是通过怎样的模式去盈利呢?很多人认为市面上很多APP都是免费的,认为app经济重点就是技术方面,其实你们错了,它们和其他事业一样都会思考商业模式。1、付费下载付费下载是少量APP的收....
-
从「商业模式画布」看产品的价值主张和用户需求
怎么都找不准产品的价值定位、需求定义?也许,你可以试试这张「商业模式画布」。《商业模式新生代》从客户群体、客户关系、渠道通道、价值主张、关键业务、核心资源、合作伙伴、成本结构、收入来源这九个关键词描述了企业(产品)如何创造价值、传递价值、获取价值的....
-
中国成为世界第一手游市场 苹果App Store主动示好
2015年7月,苹果AppStore流水达到17亿美金,创月流水新高,而该收入的增长主要归功于中国的贡献,中国正成为世界第一手游市场。这一年中,AppStore究竟发生了哪些改变?而改变的背后又意味什么?最惊喜:AppStore开始主动寻产品,走访国....
-
全民“吃鸡”热情高涨 腾讯网易谁将成为“出头鸟”?
吃鸡又成腾讯网易的角力场,究竟谁能笑到最后呢?倘若要评选本年度最火的流行语,吃鸡绝对算得上一个。随着端游《绝地求生》在全球范围火速蹿红,嗅觉敏锐的国内厂商争相推出同类型手游产品,而腾讯、网易和小米等巨头的入局更是一下子让这个IP演变成国内最新的手游主....




